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Figure 1: 4D objects converging then crossing at 0.866 c on a mirrored background
Top: traditional raytracing; Center: classical spacetime model; Bottom: relativistic spacetime model

ABSTRACT

Recent advances in physics have suggested new models that incor-
porate multiple spatial dimensions to explain new cosmological ev-
idence. These new theories are a challenge to envision and difficult
to grasp. Adapting visualization algorithms and strategies to the
new physics of multiple dimensions can aid in understanding these
non-intuitive phenomena.

This paper presents an adaptation of 4D ray tracing to a space-
time model that captures Einstein’s geometry and shows how rel-
ativistic phenomena such as Terrell rotation, aberration, retarded
time and even animation and motion blur, can emerge from a static
spacetime model. This technique has made it possible to explore
the fundamental nature of Einstein’s geometric model by decou-
pling finite light-speed from time dilation and length contraction.
The simplicity of the model also suggests new pedagogical tech-
niques that may invigorate physics education.
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1 INTRODUCTION

With the advent of the workstation, the visualization of non-
intuitive physical phenomena such as objects in 4D space and 4D
spacetime has become a reality. Since the 1980’s, papers, images,
and animations have appeared demonstrating that these phenom-
ena no longer need be relegated to the domain of the esoteric re-
searcher. Rather, the contemporary student of physics with the aid
of the ubiquitous visual computer, can have a hands-on experience
with these phenomena.

The challenge is to go beyond visualization of special relativity
or spacetime. This paper provides a method for visually conceptu-
alizing higher dimensions. The strategy is demonstrated using 4D
spacetime (3 spatial + 1 temporal dimensions), a dimensionality
that has been visited in the computer graphics literature. Since it is
possible to conceptualize spacetime viewing by extrapolating from
3D viewing, it may also be possible to view higher dimensions by
a similar process.

In our approach, time is treated as a fourth geometric dimension
with certain constraints described below. The results of viewing this
higher dimensional spacetime are compared to the results of con-
temporary special relativistic visualization. If our strategy yields
similar results, it should be possible to create a simple yet accurate
model for a geometric interpretation of Einstein’s spacetime and
a pedagogy to explain the phenomena. For simplicity, we assume
that spacetime is flat (there is no mass), there is no acceleration, and
the camera is at rest in the laboratory’s inertial reference frame (the
camera frame). The single light source is also at rest in the camera
frame.

Our geometric model treats 3D objects as cross-sections of 4D
objects projected into 3-space. The 4-space is probed via photon
paths which lie on the surface of a right circular hypercone, known
as the lightcone. The lightcone’s symmetrical axis is collinear with
the negative time (−t) axis. This results in a cross section of 4-space
that corresponds to the intersection of the lightcone’s surface with
embedded 3-manifolds. The resulting visualization of this projec-
tion should have the same properties as those provided by contem-
porary relativistic visualization tools.

The 3+1 dimensional approach was selected to adhere to Ein-
stein’s geometric vision of light propagation [6]. Representing 3D
objects in spacetime and ray tracing 3D manifolds in 4D is ex-



plained in detail beginning with a brief overview of the theory, then
presenting the simple geometric algorithms and their implementa-
tion.

1.1 Background

For a definitive treatment of Einstein’s Theory of Special Relativity,
the reader is directed to the physics literature [6][14][3][19] .

This paper will visually explore two phenomena of spacetime:
the visual effects of finite lightspeed; and the physical effects of
Special Relativity. The former visual only effects1which are due to
the delayed light signal are referred to as classical, while the latter
physical effects are referred to as relativistic. There is an interest-
ing relationship between the classical and relativistic phenomena
as pointed out by Terrell [21], Penrose [17] and Boas [2]: in that
the two effects can cancel each other out in some cases.

The classical effects of finite lightspeed are simply the apparent
distortions to an object that are the result of light from portions of
the object at different distances from the observer arriving at dif-
ferent times. A rapidly moving object’s physical shape can be de-
termined simply by compensating for the delay introduced by the
finite speed of light.

Relativistic effects result from Einstein’s relativity, and are real
and physical, not merely apparent. Einstein’s two postulates of spe-
cial relativity are:

1. The Relativity Postulate: The laws of physics are the same
for observers in all inertial frames. No one frame is a preferred
frame.

2. The Speed of Light Postulate: The speed of light in vac-
uum has the same value (c) in all directions and in all inertial
frames.

In the relativistic model, any observer traveling at any velocity
will measure the speed-of-light in a vacuum to be approximately
3× 108 m/s. In a 3D space, these principles require both length-
contraction and time-dilation for consistency with observed phe-
nomena [7]. That is to say, two different observers traveling at dif-
ferent velocities will measure the other observer’s meter-stick as
shorter and the other observer’s clock as slower than their own.

This paper will graphically demonstrate that a geometric model
can be created wherein 3D objects are considered to be cross sec-
tions of 4D objects projected into 3-space, and that the 4D objects
can be treated as rigid, assuming that there is negligible mass. A
method is provided to convert a given 3D object into a 4D space-
time object, and to observe the converted objects from the camera’s
inertial reference frame. This geometric implementation will be
shown to yield results equivalent to those of prior non-geometric
visualizations.

1.2 Related Work

Various algorithms and techniques have been developed by physi-
cists, scientists and educators for visualizing relativistic effects in
Minkowski 4D spacetime [10][11][20][18]. The two predominate
approaches are polygonal rendering and ray tracing.

1.2.1 Polygonal Rendering

In Euclidean 4-space, the polygon rendering approach is imple-
mented by extending the algorithms of 3D object projection to 4D
objects in order to project these 4D objects onto a conventional 2D
imageplane [4]. Since special relativistic visualization occurs prop-
erly within the context of a non-Euclidean 4D spacetime, the ap-
proach for visualizing 4D spacetime is subtly different from that for
a Euclidean 4-space. While not necessary for the Euclidean 4-space

1Sometimes referred to as Galilean relativity or Newtonian relativity.
The Galilean transform assumes that the geometry of space is Euclidean.

approach, a Lorentz transform2is necessary in the non-Euclidean
4-space to convert from the object’s inertial reference frame to the
inertial reference frame that contains the imageplane (the camera
frame).

Hsiung, Thibadeau, and Wu [13] implemented such a strategy
in 1990 with their novel time-buffer approach, which used graphic
Z-Buffer hardware to optimize performance. The time-buffer al-
gorithm performed conventional 3D rendering in the object’s rest
frame, and then performed a Lorentz transform operation on each
of the pixels in the object’s imageplane to convert to the camera’s
imageplane. The time-buffer then filtered for the most recent ray-
object intersection event for each pixel.

Rau, Weiskopf, and Ruder [18] implemented a polygon renderer
in 1997 in which the 3D objects in the object frame were Lorentz
transformed into 3D photosurface objects in the camera frame. The
new photosurface object, which approximated the shape of the ob-
ject as viewed from the camera frame, was then projected onto the
camera’s viewplane using conventional 3D rendering techniques.

1.2.2 Ray Tracing

In 1988 Glassner [10] developed an optimization strategy exploit-
ing temporal coherence for conventional 3D raytracing. In his ap-
proach, 3D objects were raytraced in 4D space, resulting in up to
50% processing time improvement. He also demonstrated that mo-
tion blur could be generated by varying the camera’s time com-
ponent. Although he did not demonstrate relativistic visualization
with his algorithm, he did suggest it as a direction for future re-
search.

In 1989 Hsiung and Dunn, developed a relativistic ray tracing
algorithm. In their implementation, 3D objects were imported and
maintained in their own inertial reference frame in which they are
at rest. Each conventionally traced 3D ray is Lorentz-transformed
from the camera frame to each of the objects’ frames and the usual
3D ray tracing intersection occurs in the object’s rest frame, with
the most recent intersection selected. Color information is inter-
preted and Lorentz-inverse-transformed back to the camera frame
for display. Reflecting rays are likewise Lorentz-transformed from
their originating frame to another object or light-source frame for
intersection determination, and their color information Lorentz-
inverse-transformed back to the reflecting frame. A technique for
color power spectrum processing via B-spline interpolation was im-
plemented by Hsiung, et. al. in 1990 [12].

In 2001, a promising approach was introduced by Weiskopf in
his PhD Dissertation [23] in which he described and built a four
dimensional General Relativity ray tracer. This model supported
only geometric effects, and secondary rays and shadow rays were
neglected.

1.2.3 Other Methods

In 2000, Weiskopf introduced an interesting special relativistic vi-
sualization method using image based rendering [22]. The strategy
was implemented by applying relativistic aberration to each pixel of
the visual sphere surrounding the observer, thus warping the geom-
etry of observed objects. If a wavelength-dependent plenoptic func-
tion is provided with sufficient bandwidth, then the transformed
pixel’s power-spectrum can be generated from the untransformed
image. The algorithm can be adapted to texture mapping hardware
for real-time performance with data acquired by standard cameras.

Weiskopf’s 2001 dissertation [23] provides a comprehensive de-
scription of relativistic visualization technologies and their history.

2”the Lorentz transform corresponds to a ’rotation’ of the co-ordinate
system in the four-dimensional ’world’” - Einstein [8].



1.3 Our Approach

The techniques used to visualize special relativity typically use 3D
raytracing of 3D objects, with additional logic to handle the velocity
matching and Lorentz transforms, operations that are not required
with 3D visualization. It would be advantageous if an algorithm
could be found for which no special logic and transforms are re-
quired to simulate the geometry of relativistically moving objects.
A suitable algorithm would reduce the special cases and associated
logic to less than that required with 3D visualization.

Traditional 3D animation simulates the motion of objects by
repositioning the objects in the scene between frames. In our
method described here, the 4D objects are static, and only the cam-
era’s temporal position is changed between frames. The novelty
of this model is its adherence to a geometric interpretation of Ein-
stein’s spacetime concepts3. The postulates and fundamental prin-
ciples of relativity are used as the basis for these techniques. Ray
tracing of 4D spacetime was selected as the best technology due to
its conformity to a more natural interpretation of Einstein’s space-
time. This paper also introduces temporal extrusion, a simple op-
eration to extend a 3D object into 4D spacetime. For simplicity,
this paper will emphasize the visualization of the geometry of ob-
jects with constant velocities. Although not demonstrated here, the
concepts can be generalized to accelerating objects with curved 4D
paths via curved temporal extrusions.

2 THEORY

2.1 Special Relativity Terminology

Einstein’s 4D spacetime (t,x,y,z) model consisting of both space
and time, is often referred to as (3+1)D, that is, three isotropic spa-
tial dimensions (x,y,z) and one anisotropic time dimension (t). This
convention will be used throughout this paper.

A 4D spacetime point (t,x,y,z) will be referred to as an event .
It is assumed that spacetime is flat - there is negligible mass.

The path of a lightray is therefore a straight line, as is the path of an
object with a constant velocity.

The camera will lie on the t axis, thus its spatial components
will always be zeros: (t,0,0,0). The terms camera and point-of-
view (POV) may be used interchangeably. (Purists may wish to
conceptualize a pin-hole camera that does not invert the image, with
the pin-hole at the POV [10].)

For this discussion the camera frame’s 3D axes will be rotated
such that the x axis is parallel with the object’s velocity vector, so
∆z = ∆y = 0. Speed will be measured as a fraction (β = v

c ) of
lightspeed (c).

The worldline of an object marks the object’s path through 4-
space from event to event. An object whose worldline is parallel to
the camera’s t (time) axis is stationary in the camera frame, since
there is no ∆x, hence V = ∆x

∆t = 0
An object whose worldline that is not parallel to the t axis has a

velocity, since ∆x 6= 0.
The instantaneous tangent of the worldline of an object is the ob-

ject’s velocity 4-vector (τ) in the camera frame. In the object’s rest
frame, this velocity vector is also the proper time (t) axis for the
inertial reference frame in which the object is at rest (the object
frame). For an object with a constant velocity (no acceleration) in
an inertial reference frame, the worldline and the velocity 4-vector
for that object are identical. The velocity of an object in the camera
frame is a monotonically increasing function with respect to the an-
gle between the object’s velocity 4-vector (worldline) and the time
axis of the camera frame.

3”... the four-dimensional space-time continuum of the theory of relativ-
ity, in its most essential formal properties, shows a pronounced relationship
to the three-dimensional continuum of Euclidean geometrical space.” - Ein-
stein [9]

Temporal extrusion is the construction of a higher-order (n-D)
object by extruding its lower-order ((n− 1)-D) counter part along
its velocity 4-vector, and connecting its respective bounding (n−
2)-D simplices to create (n− 1)-D simplices bounding the higher-
order object. For example, a prism could be created by extruding a
triangle parallel to the triangles’s t axis.

The operation optionally includes applying a Lorentz transform
to objects whose extrusion angles are not parallel to the camera
(laboratory) frame’s time axis. A Lorentz-decoupled (or classical)
object is one which was inserted into the scene without the Lorentz
transform (an un-physical object).

Planck or natural units, which are unitless (c = 1), will be used
throughout this paper for convenience. The benefit of natural units
is that the units of measure along all the spacetime axes are similar,
i.e. the t axis as well as the x,y,&z axis have the same scale and
identical units of measure.

This is equivalent to stating that the t axis has been scaled by
c (speed-of-light), yielding a ct axis. A lightray will travel one
unit (of Euclidean distance) along the spatial axes for each unit it
travels along the time axis - the lightrays always bisect the angle
between the time axis and the 3 spatial axes. In other words, the
’t’ component of the normalized lightray direction 4-vector shall
always be −

√
2

2 . Furthermore, the lightrays lie on the hypersurface
of a bisecting hypercone (depicted in Figure 5) whose apex is at the
origin and whose symmetric axis is collinear with the negative time
axis. In other words, the traced rays always lie at 45◦ to the−t axis.

By convention, the term relativistic velocity will be used to de-
scribe speeds between the two referents of approximately 0.866 of
lightspeed (0.866c) or greater. In some cases the term relativis-
tic is used as a modifier to describe an object that is moving with
relativistic velocity with respect to the camera frame or a referent
observer.

2.2 Expectations

Special Relativity theory makes certain predictions about what can
be expected in viewing a relativistically moving object. But, as im-
plied in Section 1.1, it is important to not confuse relativistic effects
with classical effects. The relativistic effects are length-contraction
and time-dilation. Among the classical effects are retarded time,
aberration, and Terrell rotation. These classical effects are also af-
fected by special relativity, which makes them difficult to observe
empirically. However, a suitable model will allow both the classi-
cal and relativistic components of these phenomena to be visualized
both separately and together.

2.2.1 Classical Retarded Time

The term retarded time refers to the delay in the arrival of infor-
mation about an event due to the distance of an event and the finite
speed-of-light. For an observer and an event in the same inertial
reference frame, the soonest that the light from an event 10 light-
seconds away can reach the observer is 10 seconds after the event
has occurred.

As an example, consider the case of a fast high flying jet. The
point of origin of the sound seems to trail the jet across the sky
due to the finite speed of sound. This effect is merely apparent (a
classical effect), not physical (not a relativistic effect). The jet’s
true position can be measured simply by compensating for the time
delay introduced due to the finite speed-of-sound.

Likewise, the appearance of an object is communicated causally
to an observer from the spacetime positions of the object at some
points in the past. The times that the light left each of the object’s
surface elements could be different since the object’s elements are
most likely at different distances from the observer. This will result
in a visual distortion of the geometry of the object, if the object is



moving with respect to the observer. The greater the velocity, the
more apparent the distortion.

The following apparent geometric distortions are visual effects
resulting from the aforementioned retarded time phenomena which
is an effect of finite lightspeed. The classical effects to be discussed
here are non-relativistic aberration, and the non-relativistic com-
ponent of Terrell rotation. The magnitude of these effects can be
affected by Special Relativity.

2.2.2 Classical Aberration

Aberration is a deflection in the distribution of stars in the celes-
tial sphere towards the direction of the motion of the Earth through
space. Relativistic aberration is a distortion in the visual sphere
about an observer moving through a scene with a relativistic veloc-
ity. Non-relativistic aberration is the classical component of aberra-
tion that is independent of relativity. As the velocity of the observer
increases, the objects in the scene slide towards the front of the ob-
server’s sphere of vision. That is, the angle between the observer’s
velocity vector and the angle of incidence of the light ray from an
observed object decreases monotonically as the velocity increases
such that the light from the object seems to come from a position
closer to the front of the observer. Due to the nature of relativity
(the First Postulate), the evaluation gives the same results if the ob-
ject and observer are exchanged such that the observer is at rest and
the object is passing the observer with a relativistic velocity.
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Figure 2: Classical Aberration

As shown in Figure 2, classical aberration is the apparent an-
gle (θ ′) of a moving object, which can be determined from simple
3D vector subtraction of the observer’s velocity vector (r) from the
lightray’s velocity vector (p). From the figure, it can be seen that
tanθ ′ = ∆ Y

∆ X+r . Scaling the figure so that p = 1.0 sets ∆Y = sinθ
and ∆X = cosθ . This yields the following equation where β is the
velocity of the object towards the observer (β = v

c ), θ is the angle
of incidence of the lightray to the observer, and θ ′ is the apparent
angle of the lightray to the observer:

tanθ ′ =
sinθ

cosθ +β
(1)

As can be seen from the equation, the apparent angle of inci-
dence (θ ′) of the lightray from the source to the observer will de-
crease monotonically with respect to the at-rest angle (θ ) as the
velocity (β ) increases.

2.2.3 Relativistic Aberration

Relativistic aberration is the deviation of the apparent angle of a
relativistic object from the angle to the object with respect to an ob-
server. This analysis requires the introduction of the Lorentz factor,
γ , where β = v

c , as defined above:

γ =
1√

1−β 2
(2)

The relativistic aberration can be determined from the following
equations where α replaces θ as the angle of incidence of the ligh-
tray to the observer, and α ′ replaces θ ′ as the apparent angle of the
lightray to the observer:

cosα ′ =
cosα +β

1+β cosα
(3)

sinα ′ =
sinα

γ(1+β cosα
) (4)

tanα ′ =
sinα ′

cosα ′
=

1
γ

sinα
(cosα +β )

(5)

Equation 3 was published by Einstein in 1905 [5]. Equation 4’s
derivation is shown by Rindler [19]. When Equation 5, as shown
by Pauli [16], is compared to Equation 1, the analytic difference
between the classical and relativistic effects can be shown to be a
function of Lorentz length contraction:

tanθ ′ =
sinθ

cosθ +β
(6)

tanα ′ =
1
γ

sinθ
cosθ +β

(7)

tanα ′ =
1
γ

tanθ ′ (8)

Figure 3: Relativistic aberration

A physical interpretation of the Lorentz factor is shown in Fig-
ure 3 and described as follows. The visual sphere of the observer
G in frame Green, which G perceives as spherical, appears oblate
with respect to the rest frame. The lightray intersects G’s visual
sphere at angle of incidence, θ where tanθ = γ ∆ Y

∆ X . However,
since G sees frame Green as at rest and spherical, as depicted by
the dashed circle (frame Red), G determines the angle of incidence
to be tanθ ′ = ∆ Y

∆ X . Consequently, G in frame Green perceives the
angle of incidence of the lightray to be less than that seen by an
observer at rest.

While Equation 8 shows an elegant analytical relationship be-
tween classical and relativistic aberration, it has a singularity at 90
degrees. Terrell [21] solved this problem by using the trigonomet-
ric half-angle formula to derive the following relativistic aberration
equation:



tan
α ′

2
=

√
(1−β )
(1+β )

tan
α
2

(9)

As with the classic Equation 1 and the relativistic Equation 8,
the apparent angle of incidence (θ ′&α ′) of the lightray from the
source to the observer will decrease monotonically with respect to
the incoming angle (θ ) as the velocity (β ) increases. Multiplying
Equation 9 by (1+β )

(1+β ) yields a more intuitive representation as can
be seen from the geometry of Figure 3 where the visual sphere is
length-contracted by 1

γ :

tan
α ′

2
=

1
γ

tan α
2

(1+β )
(10)

Figure 15 is included in the Results Section 4 to visualize this
relativistic aberration.

2.2.4 Terrell Rotation

The optical effect known as Terrell rotation can be attributed to a
combination of classical effects and relativistic effects: specifically
retarded time and relativistic aberration. Since the backside of an
object (the side facing away from the camera) is further from the
camera than the frontside (the side facing the camera), the light
from the backside will be delayed. Depending on the shape and
velocity of the object, it is possible for the object to dodge its own
lightray emanating from an obscured portion of the object. The
backside or distant portions of an object moving relativistically past
an observer, would appear to trail after the object (as if it were blow-
ing in the wind). This phenomena causes the object to appear ro-
tated to face in the direction of its motion, and is known as Terrell
rotation.

Although a classical effect by our definition, Boas [2] predicted
that relativistic straight lines would appear curved to an observer.
Terrell [21] predicted that in certain cases the length-contraction
can be masked by the classical (Terrell) rotation.

3 ALGORITHMS

In order to visualize both the classical and relativistic effects de-
scribed in Section 2.2, a modified raytracing mechanism was cho-
sen to represent the geometric model described by Einstein4. The
presented variant of raytracing, unlike conventional raytracing im-
plementations, takes into account the finite speed of light.

A conventional raytracing engine determines the color of a pixel
by passing a lightray from the camera through each pixel of the
image plane and out into the 3D scene. If the lightray intersects
an object, then the color of the object, modified by a suitable color
model, is transferred to the pixel of the image plane. The algorithm
is more complex when the lightray has a finite velocity.

In order to find the intersection of a finite speed lightray with
3D objects, the model must account for the changing positions of
moving 3D objects as the lightray travels towards the camera. For
multiple intersections the model must find the object-intersection
closest to the camera. Furthermore, the model must account for
length-contraction and time-dilation.

From the Principles of Special Relativity as delineated in Sec-
tions 1.1 and 2.1, the following set of specifications was formalized.

1. All objects in the scene will be instantiated in a common lab-
oratory inertial reference frame. The camera and light source,
both at rest, will be instantiated in the laboratory frame.

4”Formally, these four co-ordinates correspond exactly to the three space
co-ordinates in Euclidean geometry” - Einstein [9]

2. A 4D object is created from a 3D object by temporal extru-
sion , that is extruding the object along its velocity 4-vector in
the laboratory frame:

(a) The velocity of the extruded object is the extrusion’s
spatial change divided by the temporal change;

(b) If an object’s extrusion vector (worldline) is parallel to
the camera’s t axis, then the object appears to be static;
otherwise it appears to be moving;

(c) The Lorentz transform (LT ) is determined from the ob-
ject’s extrusion vector’s spatial to temporal ratio ( ∆x

∆t ) as
follows:

i. β = ∆x
∆ct = ∆x

∆t × 1
c

ii. θ = arctanh β

iii.

d coshθ −sinhθ 0 0 e
LT = | −sinhθ coshθ 0 0 |

| 0 0 1 0 |
b 0 0 0 1 c

(d) The Lorentz transform is applied to the object prior to
the object’s insinuation into the laboratory frame (ex-
cept Lorentz-decoupled objects). Length-contraction
modifies the object geometry, and time-dilation mod-
ifies time dependent aspects of the object such as its
color and lifetime.

3. Lightrays will be constrained to lie on the hypersurface of a
right circular hypercone symmetric about the t axis thus yield-
ing a constant lightspeed (c = 1.0) in natural units. This
hypersurface bisects the angle between the negative time axis
and the spatial axes.

4. For each video-frame, an image will be generated by itera-
tively passing a ray from the camera’s POV through each pixel
in the imageplane (or visual sphere about the POV) such that
the ray lies on the hyperconical surface, and out into 4-space
where it may intersect with a 3-manifold defining a 4D ob-
ject in the 4-space. For multiple intersections, the intersection
closest to the camera (most recent) is selected.

5. For each video-frame, imageplane pixels will be colored by
extracting the 3D properties of the Lorentz transformed 4D
object at the point of lightray/object intersection. It shall be
assumed that the light source is at rest in the laboratory (cam-
era) frame, and that the contributions of the moving objects
to one another’s local diffuse lighting are trivial (and does not
contribute to the objects’ geometry).

6. Advancing the camera along the t axis is equivalent to advanc-
ing the scene ahead in time. A sequence of animated views
will be generated by incrementing only the t component of the
camera’s (and viewplane’s) 4D position for each video-frame
with no modification to the objects in the worldspace.

3.1 Object Construction

A 3D object can be visualized by rendering the 2D faces connecting
its 1D edges. The 4D objects shown here are visualized by render-
ing the 3D hyper-faces connecting their 2D faces (Figure 4).

Extrusion is a common 3D Computer Aided Design (CAD) op-
eration whereby a 2D object is transformed into a 3D object by
extruding the object along a vector perpendicular to the plane in
which the 2D object lies. Likewise, the extrusion of a 3D object
into 4-space is accomplished by extruding the object along a vector
perpendicular to the hyperplane (3-space) in which the object lies.

Temporal extrusion is a similar spacetime operation. A 3D ob-
ject is extruded along a vector perpendicular to the hyperplane in
which the object lies. That perpendicular is the object’s proper time
axis (not the camera’s time axis). Since the object’s velocity vector



Figure 4: Cube & Triangle: Extruded then tessellated

is also the object’s time axis in this model, the object is actually
extruded along the velocity 4-vector.

As with conventional 3D rendering, complex objects are con-
structed from simple primitives. In this case, the primitives are 2D
triangles in 3D space extruded along their common time axis into
4D. For example, each of the 12 triangles of the cube in Figure 4a is
extruded parallel to its time axis for a distance equivalent to the time
the cube is in existence (and at a constant velocity) thus creating a
3D hypersurface (or 3-manifold) in 4-space (Figure 4b).

Any 3D object defined by bounding triangles (Figure 4) can be
temporally extruded into a 4D hyperobject and inserted in the
scene’s 4-space (the model database) as follows. First insert a t
component into each of the vertex coordinates and set t to some
constant value, say t0:

(xi,yi,zi)→ (t0,xi,yi,zi).

Figure 5: 2D face prior to temporal extrusion

The object now lies embedded in the t0 hyperplane orthogonal to
the t axis (Figure 5). In other words, the object instantly appears for
a moment at t = t0. Each of these triangles, and hence the object
composed from them, can be extruded into the 4th dimension by
duplicating the vertices of the triangle with lessor (or greater) values
for the t components. If the object is at rest in the camera frame, a
constant, ∆t, can be added to the t components, before each triangle
is extruded from the original (t0) hypersurface to the new duplicate
(t0 +∆t) hypersurface. As in Figure 6 where ∆t < 0, connecting the
respective vertices of the extruded and original triangle pairs creates
a prism from each triangle:

(xi,yi,zi)→ (t0,xi,yi,zi)+(∆t,∆xi,∆yi,∆zi)→ (t1,xi,yi,zi)
where ∆xi = ∆yi = ∆zi = 0→ v = 0

The prisms are then tessellated into three adjacent tetrahedra
simply by using a table to connect two triads of vertices by way
of two triangles as shown in Figure 4. The 3D simplices are neces-
sary for the Barycentric algorithm used to find precisely where, on
the 3-manifold (i.e. within the 3D hyper-face) of the 4D object the
intersection with the ray occurs.

An object’s velocity is represented by changing the position of
the extruded end of the triangle (Figure 7) with respect to the origi-
nal end, e.g. xend = xbeg +2.0, so that ∆x = 2.0 spatial units. The
speed would thus be 2.0 spatial units

time unit .

Figure 6: Triangle at rest extruded through lightcone

Figure 7: Temporal extrusion not parallel to ’t’ axis

Two classes of 3D objects have been implemented in the soft-
ware: the Hyper-object (Hob j) and the Virtual-object (Vob j). Con-
ceptually, the Hob j is observed passing through the laboratory in-
ertial reference frame at a relativistic velocity, and so the measure-
ments of the object are already in the laboratory’s subjective units,
meaning it is already length-contracted and time-dilated. This Hob j
is added to the database using its subjective dimensions as seen in
the camera frame, since it is already Lorentz transformed. This
Hob j class is used to specify Lorentz-decoupled objects.

The Vob j is likewise passing through the lab frame at a relativis-
tic velocity, but has been observed at rest, and the object size is
obtained from its own rest frame. The Vob j is entered into the data-
base using its proper rest dimensions, and a velocity vector in the
laboratory (camera) frame. The virtual object must thus be Lorentz
transformed from its rest frame to the laboratory frame as it is in-
stantiated in the scene. The velocity 4-vector (∆t,∆x,∆y,∆z) con-
tains the numeric lifetime of the object as the temporal (∆t) com-
ponent, and the travel distance in time ∆t as the spatial (∆x,∆y,∆z)
components.

If an object’s extrusion vector is kept to less than 45◦ with respect
to the t axis (i.e. inside the lightcone), then it will have a velocity
less than that of light. As an interesting aside and an extension
to the standard model, super-luminal velocities may be represented
via (Lorentz-decoupled) objects with extrusion angles greater than
45◦.

3.2 Viewing 3D Objects in (3+1)D Spacetime

Consider a 3D viewfrustum in 3-space (x,y,z), whose camera lies
at the origin, and whose line-of-sight is collinear with the x axis. If
a 3D object such as a cube were placed within the 3-space viewfrus-
tum, the object can be viewed via traditional raytracing.

Figure 8 depicts a hypercone in 4-space (t,x,y,z), whose sym-
metric axis is collinear with the −t axis, and whose apex is coinci-
dent with the origin (0,0,0,0). This hypercone’s hypersurface has
3 dimensions, sufficient to contain the 3D viewfrustum. Although it
is a 3-manifold in 4-space, this hypercone is known as a lightcone .

Conceptually, to account for the finite speed of light, the view-
plane can be considered to be spherical thus allowing lightrays from



Figure 8: Viewfrustum projected onto lightcone

all pixels to reach the view point at the same time, and so do not
contribute to geometric distortion. This viewplane is extruded along
the negative time axis and is guaranteed to remain on the light cone.
Such an extrusion is shown in Figure 8. Since it is a right circu-
lar hypercone, the 4D camera coordinate is (0, 0, 0, 0), while the
viewplane coordinates for each pixel (p) are:

(tp,xp,yp,zp) = (−
√

x2
p + y2

p + z2
p,xp,yp,zp) (11)

As depicted by the red or shaded dots in Figures 6 & 7, a camera
located at the origin of this 4D model can see only those 3D objects
whose extruded tetrahedra intersect the lightcone, that is vertex ex-
trusion pairs (t0,xi,yi,zi) & (t1,xi,yi,zi), where:

t0 >= ||(xi,yi,zi)||>= t1,∀ {(t0,xi,yi,zi) & (t1,xi,yi,zi)} (12)

Lightcone crossing events are detected by solving for the inter-
section of a lightray with each of the bounding tetrahedra. The set
of lightrays is defined as that set of 4D straight lines passing from
the camera through each of the pixels in the viewplane’s pixel grid
and out into 4D space. Using a barycentric algorithm the intersec-
tions of the ray with all tetrahedra faces are determined, and that
intersecting event nearest to the camera (i.e the t value closest to
0.0) is selected. The array of 1D lightrays that originate from the
gridded viewplane result in a 2D image of the object(s) projected
onto that viewplane.

Since the objects have been Lorentz transformed prior to the in-
tersection, such that their geometry is correct for the camera frame
in which the intersection occurs, the geometric components of the
lighting model, the surface normal and the reflection angle, can be
used to determine that pixel shade just as with a conventional light-
ing model in 3D rendering.

If the true pixel color is required, a relativistic Doppler shift must
be applied to the color model at the surface intersection. This later
step is not necessary to view the geometry of the object(s), and may
in fact hider the object’s visibility since, at relativistic velocities,
light can Doppler shift out of the visible range.

4 RESULTS

It is critical that both the physical model as well as the visual repre-
sentation are accurate and properly resolve relativistic optical prop-
erties. That is, if the 4D spacetime model is accurate, then it can be
expected to manifest certain relativistic optical properties. Among
these are motion, retarded time, Terrell rotation and relativistic
aberration. Two characteristic classes of optical phenomena were
examined and compared: low-speed effects and relativistic effects.

Low-speed effects are in this case, those for which the magni-
tude of the velocity vector of the object frame is less than 1% of the
speed of light with respect to the camera frame: typically much less
than 3,000 Km/sec. Those speeds encountered in day-to-day activ-
ities are in this category. A relativistic velocity of 0.866c was used
for convenience, since at 86.6% of lightspeed the Lorentz factor is

2.0: objects contract to 1
2 their rest length; and the object’s time

dilates to twice its proper time. In other words, the object’s meter
sticks are 1

2 of a meter long as measured in the rest frame; and for
each second that is ticked off by the object’s clock, two seconds
will pass in the rest frame.

The non-relativistic objects in this paper travel at 0.00866c. In
some cases, an instantaneous lightray was used (i.e. the lightspeed
was set to infinity) to show by comparison, the effects of a finite
lightspeed.

A visual software test fixture (VSTF) was created that would
display animated sequences for user specifiable object shapes, posi-
tions and relativistic velocities, as well as camera position, attitude
and velocity. The VSTF displays both 3D and 4D objects allowing
visualized 4D objects to be compared to 3D test points visualized
via conventional algorithms. The VSTF can operate in a debug
mode, providing a means to interactively examine variables or to
log results for later comparison against expected results.

For the following test cases, the unit of time is the tick of an arbi-
trary clock, and its spatial unit is the distance that light travels in one
tick of this universal clock. As stated in Section 2.1, natural units
will be used throughout such that the unit of measure for the spatial
axes and the time axis is the unit. However, for pedagogical clarity
the t axis or time units will be referred to by the term t.units and the
spatial units will be referred to as l.units, but t.unit ≡ l.unit.

As shown in Figure 9 the VSTF displays a stage overlaid with a
12x12 grid. The red (darker shaded) grid lines with cross-section
of 1

20 of an l.unit, are on one l.unit centers, as are the red (or darker
shaded) rungs on the green (or lighter shaded) rails suspended four
l.units above the stage. The green (or lighter shaded) grid lines
represent the X and Z axes on the stage. The stage and these tick-
marks as shown are identical for both non-relativistic and relativis-
tic images. Light takes about 8.66 seconds to cross the stage. To
give a sense of scale, this is equivalent to a 2.596 Million Km stage
which could comfortably accommodate Jupiter and the orbit of it’s
moon, Ganymede. Each l.unit is 216,350 Km, and a t.unit is 0.721
seconds. The corresponding animations were rendered at 10 video-
frames per t.unit (except for the example in section 4.1.2) and are
available online at [1].

4.1 Visual Evidence

Figures 9 - 18 demonstrate that our spacetime model accurately dis-
plays a 3D object moving at up to relativistic velocities and accu-
rately renders the effects of retarded time, Terrell rotation, and aber-
ration. The first two figures (Figures 9 & 10) demonstrate that for
non-relativistic motion (e.g. β = 0.00866), the model yields the
expected results.

4.1.1 Animation as a Property of Spacetime

Although not an emergent property5, animation of a 3D object
emerges as a result of the object’s representation within this 4D
spacetime model. Video-frames from the animation are shown in
figures 9 and 10. These images were rendered by moving the
camera from (t,x,y,z)cam = (940,0,6,15) for video-frame 920 to
(t,x,y,z)cam = (1171,0,6,15) for video-frame 1151 (the camera
was moved ahead 20 frames to allow enough time for the light to
reach the camera). The accompanying animation sequences further
demonstrate the emergence of animation from a static spacetime
scene.

In these sequences, the simple right-angle flange has the follow-
ing dimensions: 4.0 l.units high by 2.0 l.units wide by 2.0 l.units
deep. The faces have no depth (being merely two-sided planes).

5Emergent properties arise out of more fundamental entities and yet are
novel or irreducible with respect to them. [15]



The flange is constructed and temporally extruded as described in
Section 3.1

4.1.2 Retarded Time

Figure 9: Right moving flange at x = 0 in video-frame 920.

In the first demonstration, the flange was encoded with a velocity
of 0.00866c by offsetting the flange during the extrusion process as
described in Section 3.1. A ∆x of 17.32 l.units for an elapsed time
(∆t) of 2000 t.units was coded, yielding

Vexp = ∆x
∆t = 17.32 l.units

2000 t.units = 0.00866 l.units
t.unit .

In Figure 9, the flange is moving from left to right at 0.866%
of lightspeed. Using the crossing green lines on the stage as the
origin, the camera is at (0,9,15). Figure 9 shows the position of the
moving flange with respect to the stage’s grid marks within 0.05
l.units. Note that the flange lies exactly between x =−2 and x = 0.

Figure 10: Right moving flange at x = 2 in video-frame 1151.

Examining Figure 9 and Figure 10 demonstrate that the algo-
rithm is accurate. Figure 9 shows video-frame 920 with the right
edge of the flange at the center gridline x = 0 of the stage. Fig-
ure 10 shows fame 1151 with the right edge of the flange at x = 2,
giving a ∆x of 2.0±0.05 and a ∆t of 231. At an animation rate of 1
t.unit per video-frame, this yields a velocity of approximately

V = ∆x
∆t = 2

231∗1
l.units
t.unit = 0.00866 l.units

t.unit ± 2.5%.

By comparing Figure 9 at video-frame 920 with Figure 10 at
vide-frame 1151 it can be seen that the image of the flange has
moved 2.0 l.units in 231 video-frames (231 t.units) or 0.008658

l.units
t.unit , within the expected value to better than 0.02% at non-

relativistic speeds. The accuracy thus meets or exceeds the pre-
cision of the visual measurement procedure.

At the stated non-relativistic velocity, the relativistic effects are
not visible. However, if the velocity is increased by 2 orders of
magnitude, from 0.00866c to 0.866c, then relativistic effects are
observable, as is shown in the next section.

4.1.3 Classical Aberration

To demonstrate classic aberration, four depictions of the view of
a distant object (star) were generated. The four positions on the
Earth’s orbit as shown in Figure 11 were chosen. These images are
displayed below in Figures 13 and 15.

Figure 11: The four seasonal views from Earth
Earth’s position in orbit with respect to star (cube) in Figures 13 and 15.

A) Top left - approaching; B) Top right - moving left;
C) Bottom left - receding; D) Bottom right - moving right;

Figure 12: No Aberration - Observer at Rest
Control Frame to show image with observer at rest.

Figure 12 is a control-frame that depicts the cube (representing
the star) from the four cardinal positions while at rest. Figure 13
shows the same four views of the cube, representative of the view
of a star as seen from the Earth at three month intervals as it orbits
about the sun. Note that the cubes project onto the center of the ref-
erence grid 10 unit sides, as shown in each view from the observer



Figure 13: Classical Aberration Model
Seasonal views of a star from Earth (with orbital velocity of 0.5c)

Top left - Earth approaching; Top right - Earth moving left;
Bottom left - Earth receding; Bottom right - Earth moving right;

at rest. Figure 11 depicts and Figure 13 shows, clockwise from the
top left: (top left) the Earth approaching the star and the star’s area
compressing; (top right) the Earth moving to the left and the star
migrating to the front of the moving Earth; (bottom right) the Earth
moving to the right and the star migrating to the right; and (bot-
tom left) the Earth moving away from the star and the star’s image
expanding to envelope the visual sphere. The classical model will
limit the aberration to less than 45 degrees, while the relativistic
model in the next section, will allow the retreating star to envelope
the entire visual sphere.

The cube is 1E5 units on a side, and lies 1.5E5 units from the
observer (camera). The 20x20 grid lies between the cube and the
observer 10 units from the observer. The cube and grid are posi-
tioned such that the cube (at rest) projects a 10x10 silhouette onto
the grid centered on the red cross-hairs. So the cube at rest sub-
tends an angle of arctan 10

10 or 45◦ from the observer. Note that at
0.5c, the top right cube migrates approximately 26.6 degrees in the
direction of motion of the observer with respect to the cube. This
can be confirmed visually by noting that the right edge of the cube
has move 5 grid marks left which equals arctan 5

10 = 26.565◦.

Figure 14: Classical Aberration Model at 0.866c

Figure 15: Relativistic Aberration Model
Seasonal views of a star from Earth (with orbital velocity of 0.5c)

Top left - Earth approaching; Top right - Earth moving left;
Bottom left - Earth receding; Bottom right - Earth moving right;

4.1.4 Relativistic Aberration

Relativistic aberration is likewise visualized with four views corre-
sponding to views from four seasons of the Earth’s orbit as depicted
in Figure 11. The relativistic model introduces Lorentz length con-
traction of both the object, and the space in which the object is em-
bedded. This leads to additional distortions in the object’s geometry
beyond those apparent for classical aberration, and will be obvious
in the approach and retreat images.

Figure 15 shows four views of a cube, similar to that described
in Section 4.1.3, Classical Aberration, above. As with the scene
above, the cube at rest subtends an angle of arctan 10

10 or 45◦ from
the observer. Note that at 0.5c, the top right cube migrates ap-
proximately 30◦ in the direction of motion of the observer with
respect to the cube, slightly greater than the 26.565◦ of the Clas-
sical model, above. This can be confirmed visually by noting that
the right edge of the cube has moved 5.77 grid marks left which
equals: arctan 5.77

10 = 30.0◦.

Figure 16: Relativistic Aberration Model at 0.866c

The relativistic contribution is obvious in the leftmost two pan-
els of Figure 15 showing approaching and retreating objects. While
in the classical model, the lightspeed limits the angular distortion
in a retreating view of an object to 45◦, the relativistic model’s an-
gular aberration of an object trailing the observer can reach nearly



180◦. The result is that at 0.866c, the cube’s edge moves from a
position with respect to the direction of motion of 153.4◦ to 93.6◦,
effectively filling the panel, as shown in Figure 16 .

4.1.5 The Teaser Images

The finite lightspeed was decoupled from the physical effects in or-
der to observe the respective contributions. The five teaser images
(Figure 1) on the first page of this paper depict both decoupled fi-
nite lightspeed effects with no Lorentz transform and Lorentz trans-
formed relativistic objects. The images depict the ubiquitous flange
approaching, crossing, and departing the centerline of the scene at
0.866c. The top third of the image depicts an infinite lightspeed
as per contemporary rendering, the middle third depicts a classical
model of finite lightspeed with no physical effects, and the bottom
third depicts the relativistic model showing the Lorentz contrac-
tion effects. The finite lightspeed camera was moved ahead in time
(18.675 t.units), an amount equal to the lightspeed delay from the
center of the stage to the camera, so that the flanges appear to be in
approximately the same positions. The top view would be impossi-
ble to capture from any camera position or camera inertial reference
frame without computer graphics6.

Note that the bottom flanges appear to cross each other before
the top flanges. Note also, that even with this head start, the top
flanges arrive at their respective edges at the same time as the bot-
tom flanges. The bottom flanges appear to approach faster and re-
treat slower than the top flanges. This is the visual evidence of
the classical aberration effect. The flanges approaching the cen-
terline of the stage are effectively approaching the camera, which
is relativistically equivalent to the camera approaching each of the
individual flanges. This configuration causes the angle from the
centerline to the flanges to appear smaller than the proper angle of
incidence, so the object appears closer to the centerline, or ahead
of the object’s proper position as depicted in the top view, and as
predicted by Equation 1.

This is true for both the leading and the trailing edges of the
flange, independently. As a result, the leading edge, which is closer
to the centerline, has seemed to move further than the trailing edge,
giving the impression of a wider flange. The opposite effect occurs
as the flanges move away from the centerline. The flanges appear to
incrementally speed up and simultaneously contract as they move
relativistically away from the camera. These aberration effects are
apparent in the bottom two images of Figure 1.

4.1.6 Terrell-Penrose-Boas Rotation

Terrell and Penrose predicted that an object moving past an ob-
server relativistically, would appear to rotate in the direction of mo-
tion. This effect can be seen clearly in Figure 18, where the flange
is moving from left to right at 0.866c. This is the same object, in
the same position, as in Figure 17.

The classical distortion is an optical effect due to the finite lim-
itation of the speed of light. The camera is at (0,9,15). As can be
seen in Figure 17, when the flange’s trailing edge is coincident with
the X = 0 plane, the object’s trailing upper left corner is at (0,4,2).
This corner is then at a distance of [0,9,15] -[0,4,2] or 13.9 l.units
from the camera. The trailing lower left corner is at (0,0,2), so the
camera is at a distance of [0,9,15]-[0,0,2], or 15.8 l.units. Light
will thus take 13.9 t.units to get to the camera from the first corner,
and 15.8 t.units from the second corner, yielding a difference of 1.9
t.units. In 1.9 t.units, at 0.866c, the flange could travel 1.66 l.units,
resulting in the trailing bottom edge of the flange being about 1.66
l.units behind the top trailing edge.

6In reality, without computer visualization, the top views could only be
physically captured from three separate cameras in three separate inertial
reference frames and then matted together.

Figure 17: Terrell rotated flange (Lorentz decoupled)

Figure 18: Terrell rotated and Lorentz contracted flange

Careful examination of Figure 18 shows this to be the case, the
apparent distance of the lower left corner of the flange from the
green x = 0 gridline is about 1.66 l.units. Similarly the furthest top
edge of the flange appears to coincidentally be trailing by the same
distance behind the closest top edge. The overhead red rungs, be-
tween the green rails, are likewise spaced one l.unit apart and can be
used to reference the furthest top edge’s trailing corner. This corner
is at (0, 4, 0), and so is [0,9,15]-[0,4,0], or 15.8 t.unit from the cam-
era, the same as the trailing bottom corner. This coincidence was
arranged by suitable placement of the camera, and demonstrates
that the algorithm implemented in the VSTF is visibly accurate to
within at least two decimal places.

Boas [2] predicted that straight lines would appear curved. This
effect can be seen in the vertical edges of the flange in Figure 17.
In addition, the masking of the Lorentz contraction is depicted in
Figure 18. This is the same view as Figure 17, but with Lorentz
contraction restored. As can be seen, the flange has contracted to
exactly 1

2 its proper length. Note also that the Terrell rotation has
filled in for the contraction, thus masking the Lorentz contraction
as predicted by Terrell.

5 CONCLUSIONS

Applying the principles of special relativity has yielded animation
sequences of 3D objects by 4D raytracing of static 3-manifolds em-
bedded in a 4D spacetime without modifying the 3D scene between
video-frames. The 3D objects were extruded into a 4th dimension
orthogonal to the 3D axes. It was demonstrated that the apparent ve-
locity of the animated object was related to the angle between the



extrusion and this 4th axis. A raytracing engine was developed to
intersect its rays with these 4D objects from various points-of-view
coincident with the 4th axis. It was demonstrated that if the point-
of-view was advanced along this 4th axis, the objects appeared to
move at velocities corresponding to the above described extrusion
angle of the objects to this 4th axis. The objects exhibited charac-
teristics attributed to objects moving with relativistic velocities with
respect to the camera, such as Penrose-Terrell rotation, aberration
and retarded position.

The Spacetime Raytracing strategy accurately renders objects
with velocities from zero to the lightspeed-limit without modify-
ing the object database between video-frames. The rendered im-
age includes the usual photorealistic raytrace features such as re-
flection and shadows. Anti-aliasing can be extended into 4D to
provide motion-blur. The non-relativistic optical effects of rela-
tivistic velocities are intrinsic properties of the algorithm and nat-
urally emerge as the object velocity with respect to the observer
approaches the speed of light. Similar techniques could be applied
to exploring the geometric properties of extra dimensions.
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